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A market model for stochastic implied volatility
By Philipp J. Sch ö nbucher

Department of Statistics, Faculty of Economics, University of Bonn,
Adenauerallee 24-42, 53113 Bonn, Germany

(p.schonbucher@finasto.uni-bonn.de)

In this paper a stochastic volatility model is presented that directly prescribes the
stochastic development of the implied Black–Scholes volatilities of a set of given
standard options. Thus the model is able to capture the stochastic movements of
a full term structure of implied volatilities. Conditions are derived that have to be
satisfied to ensure absence of arbitrage in the model and its numerical implementation
is discussed.

Keywords: option pricing; stochastic volatility; smile effect;
term structure of volatility; strike structure of volatility

1. Introduction

The aim of this paper is to provide a framework for the market-based pricing and
hedging of exotic options and options on volatility indices. In addition to the usual
share and bond underlying securities, the model presented here also uses the prices
of liquidly traded standard options as underlying securities. The prices of the stan-
dard options are given in terms of their implied Black–Scholes volatilities, which are
stochastic.

We will follow a market-based approach applied to the term structure of implied
volatilities, which is similar to the market models of the term structure of interest
rates by Miltersen et al . (1997), Brace et al . (1997) and Jamshidian (1997).

Using a market-based approach means that we do not model ‘fundamental’ quan-
tities like, for example, the stochastic process of the volatility of the share price (as
in the traditional stochastic volatility models of Hull & White (1987), Heston (1993)
or Stein & Stein (1991)), or the instantaneous conditional forward volatilities (as in
the effective volatility model by Derman & Kani (1998)), or forward variances (like
in Dupire (1993a)), but we model the Black–Scholes implied volatilities directly. This
facilitates the fitting of the model to observed option prices and gives the model a
larger degree of flexibility.

As we allow stochastic dynamics for the implied volatilities we have to ensure that
no arbitrage opportunities arise in the model. Therefore, sufficient conditions are
derived that have to be imposed on the drift coefficients of the implied volatilities
and that ensure absence of arbitrage in the model.

(a) The information content of traded options prices

There are good reasons for incorporating the prices of at least some traded options
into a stochastic volatility model.
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Since the advent of the famous Black & Scholes (1973) option pricing model and
the introduction of exchange-traded option contracts in the same year, the volume
and liquidity of traded options has increased exponentially. Simultaneously, more
and more complex exotic option specifications have arisen with features ranging
from American early exercise, knock-in and knock-out barriers, Asian averaging and
lookbacks to combinations of these and other features with many different pay-off
functions and multiple underlying securities.

While on the one end of the spectrum the development has gone towards increas-
ingly complex specifications, there has been a significant increase in liquidity in the
markets of standard European or American call and put options. For almost every
major stock index or its futures contract there are liquid markets for European or
American call and put options with a broad range of strike prices and maturities.
These markets make the trading of a new piece of information possible: information
on volatility.

The efficient markets hypothesis in its semistrong form (see, for example, Fama
1970) states that prices in liquid markets contain all information that is relevant to
the pricing of the security under concern and that is publicly available in the market.
The information relevant to the pricing of options is information about volatility,
information that is not directly contained in the prices of the underlying security.

It has been debated whether the efficient markets hypothesis is always fully valid,
but there is compelling evidence that exchange-traded options prices do contain
idiosyncratic information that cannot be backed out from the price information of
the underlying security alone. For example, Chiras & Manaster (1978) or Fleming
et al . (1995) show that predictions of future stock-price volatility that are based on
the implied volatility of option prices are superior to predictions that are based on
information from the stock-price process alone.

That options prices contain volatility information can also be seen from the fact
that options traders focus on the new information that is encoded in the securities
they trade: information about volatility. Prices of standard options are usually quoted
in terms of the implied volatility σ̂ that has to be substituted in the Black–Scholes
option pricing formula (see, for example, equation (2.2)) to reach the cash price of
the option. This does not mean that the market participants assume that the Black–
Scholes model with all its imperfections applies to the actual market, instead they
just use the Black–Scholes formula to make their price quotations more independent
from the movements of the price of the underlying security for which there is already
an efficient market.

The advent of sufficiently liquid markets for standard options has several conse-
quences.

First, the market prices will show deviations from the prices implied by the Black–
Scholes formula. This is not due to any pricing errors in the market but to the
inaccuracies in the assumptions of the Black–Scholes model itself which are already
corrected in the market prices, and, as explained above, it is due to additional infor-
mation that the Black–Scholes formula cannot reflect.

Second, because of the liquidity of the standard options market, the need to theo-
retically price these securities is diminished: a fair-price indication can be read from
the market (and it is even likely to be more accurate), arbitrage opportunities will be
unlikely to exist and a hedge strategy is less important because the position can be
unwound quickly. Pricing models are most useful if there might be arbitrage opportu-
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nities in the markets, if the instrument to price is not well understood or if a hedging
strategy is needed. This is often not the case for standard options; for exotic options
on the other hand there is a need for pricing models.

Third, given that standard options markets reveal additional information about
the likely dynamics of the underlying, instead of deriving prices for them, a pricing
model should use their prices as input. This should yield an increase in accuracy over
the standard Black–Scholes model. Then the standard options can also be used as
additional hedge instruments.

The model presented here tries to take these points into account. It is designed
to incorporate traded options prices (and thus the information that they contain) in
order to improve the pricing of more exotic instruments.

(b) Related literature

The deviation of observed market prices for options from their theoretical coun-
terparts (as given by the Black–Scholes formula) has triggered a large literature in
which both academics and practitioners alike have tried to improve on the limitations
of the Black–Scholes model.

One strand of the literature concentrates on the nature of the underlying asset-
price process which was assumed to be a lognormal Brownian motion by Black &
Scholes. Here the main focus is on stochastic volatility models which assume that
volatility of the stock-price process is not constant but is itself stochastic. Well-
known papers on this approach are by Hull & White (1987), Heston (1993) or Stein
& Stein (1991).

These models can usually reproduce the typical shapes of implied volatilities
observed in the markets (the ‘smile’) but they cannot be fitted easily to any given
implied volatilities. Furthermore, these models have only one additional factor driv-
ing the stochastic volatility and cannot be extended to the multifactor case, and the
expressions given for the prices of the standard European call and put options are
very complex and cannot be considered to be in closed form (e.g. Heston’s (1993)
model still requires a numerical inversion of the Fourier transformation).

In another direction of research—the implied tree approach—the aim was to keep
as closely as possible to the Black–Scholes set-up while exactly reproducing the option
prices given in the market. This is achieved by specifying a time- and state-dependent
(i.e. share price) volatility function which does not contain any additional random
component. Models of this type are by Rubinstein (1995), Derman & Kani (1994),
Derman et al . (1996) and Dupire (1993b, 1994).

While exactly reproducing the option prices observed in the market, the implied
volatility models have the drawback that they do not allow for idiosyncratic stochas-
tic dynamics in the option prices. This is in conflict with empirical observation† and
with the continuous updating of the new information reflected in the option prices.
The poor results in a hedging test performed by Dumas et al . (1999) are probably
also due to this drawback.

Dupire (1993a) took a first step towards incorporating stochastic dynamics into the
term structure of volatilities, but again he models realized volatilities (and forward
contracts on it) and not implied volatilities from options prices.

† See, for example, Skiadopulous et al . (1998) for an analysis of the dynamics of implied volatility
surface given by the S&P 500 options at the CME.
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In a recent paper, Derman & Kani (1998) have extended their implied tree ap-
proach to allow for stochastic dynamics in the full term and strike structure of
implied local volatilities. They derive restrictions on the drift of the local volatilities
that are necessary for absence of arbitrage, and these restrictions involve integrals
over all possible share prices and times before the maturity of the forward volatility
concerned. The complexity of these restrictions makes the model hard to handle and
we are going to propose a slightly different approach. Furthermore it is not obvious
how in Derman & Kani’s (1998) model it is ensured that the implied volatilities
satisfy certain no-arbitrage restrictions as expiry is approached. (These restrictions
will be derived later.) The fundamental problem is that Derman & Kani (1998)
specify two things that may be contradictory: the dynamics of the spot volatility
and the implied volatilities for different strike prices and maturities. Nevertheless
the approach taken in these two papers is closest to the approach taken here.

As the dynamics of a whole term structure of security prices are to be captured,
the modelling of implied volatilities is similar to the modelling of the term structure
of interest rates. There one of the most elegant solutions to the problem of fitting
a range of prices to a model has been proposed by Heath et al . (1992), which is to
model the whole term structure of interest rates and then to impose restrictions on
the drift of the rates to ensure absence of arbitrage.

While the Heath et al . (1992) approach was very successful, it still did not directly
describe the dynamics of the most liquid instruments in the fixed income market:
the Libor futures and the interest rate swaps. Therefore, in some recent papers (see,
for example, Miltersen et al . 1997; Brace et al . 1997; Jamshidian 1997) there has
been a shift to models that directly model the rates that are used in the market (i.e.
forward Libor and swap rates) instead of instantaneous forward rates. These models
were termed market models of interest rates and they were the direct inspiration for
this paper: here too, the aim is to directly model the implied volatilities as they are
quoted in the market and not some fundamental but unobservable quantity.

(c) Structure of the paper

The stochastic volatility model is built up in several steps, going from single options
via a discrete term structure of maturities to a continuous term structure of matu-
rities.

After the introduction of the model set-up in the next section, the main intuition is
discussed using a single traded European call option. The no-arbitrage condition on
the drift of the option’s implied volatility is derived, and we analyse the restrictions
that have to be imposed to ensure regularity of the option price at expiry. The smile
and frown effects are analysed and it is shown how they can be incorporated using
the volatility of volatility and the correlation of the implied volatility with the share
price.

In the following section the model is extended to a discrete term structure of
option prices and implied volatilities. We introduce the concept of a forward implied
volatility and its differences to the forward volatility found in Dupire (1993a). Again
no-arbitrage conditions and consistency conditions at expiry dates are derived.

Then this set-up is extended to a continuous term structure of implied volatilities
and instantaneous forward volatilities. While this may seem more complicated in
some respects, in others it is more convenient as the process of the spot volatility
arises naturally from the model.
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Furthermore, it is shown in each section how this model can be implemented
to price a variety of exotic options, and also to price futures contracts on implied
volatility. Such contracts are traded on some exchanges, e.g. the VOLAX future at
the DTB. The conclusion sums up the results of this paper.

2. Model set-up

(a) Traded securities

The model is set up in a probability space (Ω, (Ft)(t>0), Q), where the filtration
(Ft)(t>0) is generated by the N + 1-dimensional Brownian motion (W0,W ) = (W0,
W1, . . . ,WN ) and satisfies the usual conditions. Q is the martingale measure (or
pricing measure) under which discounted price processes are martingales.

There are several liquidly traded securities: the underlying of the options S (called
the share price from now on), a set of European call options with strike prices and
maturities† {(Km, Tm)m 6 M}, and a risk-free investment opportunity (the bank
account) with constant interest rate r. To each state variable (time, share price,
implied volatilities) there is exactly one traded security (bond, share, traded options)
so that the markets are complete (assuming a non-singular variance/covariance struc-
ture of the asset prices).

Market completeness distinguishes this model from the classical stochastic volatil-
ity models where the share is assumed to be the only traded risky security and
therefore markets are incomplete. On the other hand, by adding one traded deriva-
tive these models can also be completed. Here the traded standard options and their
prices are taken as direct input, which has the additional advantage that no market
prices of risk or preferences have to be specified: the market price of risk can be
implied from the observed prices.

We assume that the share-price process can be represented as a stochastic volatility
lognormal Brownian motion:

dS = rS dt+ σS dW0, (2.1)

where σ is stochastic. The drift of rS is imposed to make the discounted share price
a martingale, and, given a positive price process for S, a representation like (2.1) can
always be found. We will analyse the precise nature of the dynamics of σ later on.

The prices of the call options are given by the Black–Scholes formula and option-
specific implied volatilities σ̂(Km, Tm). The implied volatility is typically different
across the traded options. We denote with implied volatility the Black–Scholes im-
plied volatility as opposed to the actual volatility, which is the volatility of the share-
price process.

As the model is not set up in a Black–Scholes world with constant share-price
volatility, the Black–Scholes formula serves only as a convenient way of describing
option prices via the parameter σ̂. Typically, the implied Black–Scholes volatility
σ̂ of the options is neither equal to the actual share-price volatility σ nor to some
expectation of it. There are close links between actual and implied volatilities but
they are more complex and will be discussed in more detail later. For now it is only
important to note that it is much easier to observe the value of the implied volatilities
than the actual volatility.

† The set of options will be a continuum in later sections.
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We can restrict our attention to the call option prices as put option prices follow
from put–call parity:

C − P = S −Ke−r(T−t).

Put–call parity follows directly from a comparison of pay-off profiles and therefore
holds independently of the distribution and dynamics of the share price or of possibly
stochastic volatility. Hence, call and put options with the same maturity and strikes
have to have the same implied volatility.

(b) Implied volatilities

(i) Definition

The implied volatility σ̂ of an option is implicitly defined as the parameter σ̂ that
yields the actually observed option price when it is substituted into the well-known
Black–Scholes formula (together with time t, the price S of the underlying, interest
rate r and the parameters K,T of the option). The Black–Scholes formula is

C(S, t;K,T ; r, σ̂) = SN(d1)− e−r(T−t)KN(d2), (2.2)

where the coefficients d1 and d2 are given by

d1 =
ln(S/K) + (r + 1

2 σ̂
2)(T − t)

σ̂
√
T − t ,

d2 =
ln(S/K) + (r − 1

2 σ̂
2)(T − t)

σ̂
√
T − t .

(N(x) is the cumulative standard normal distribution function.) The Black–Scholes
formula (2.2) is the solution to the well-known Black–Scholes partial differential
equation

0 = Ct + 1
2 σ̂

2S2CSS + rCS − rC, (2.3)

with the final condition C(S, T ) = (S −K)+ and appropriate boundary conditions
at S → 0 and S → ∞. (To simplify notation we will write all partial derivatives as
subscripts from now on.) Note that the solution of this partial differential equation
equals the actually observed option price only for the implied volatility for this
option. Similarly, implied volatilities can also be defined for more complex options
(e.g. American or barrier options) which still have to satisfy the Black–Scholes partial
differential equation (2.3) (unless there is strong path dependence in the option price
in which case the state space will have to be extended).

It is common practice in futures markets to quote option prices not directly but
in terms of the implied volatility that has to be used in the Black–Scholes formula
to reach the cash price of the option. This relieves the market makers from the task
of tracking every single movement in the price of the underlying asset and enables
the traders to concentrate on the option-specific features.

(ii) Forward options prices

If, instead of the spot price of the underlying the forward price F (with the same
maturity T as the option),

F (t) = er(T−t)S(t), dF = σF dW0, (2.4)
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is given, then the modified model of Black (1976) gives the forward option prices C̄
as

C̄(F, t;K,T ; r, σ̂) = FN(d1)−KN(d2), (2.5)

where the coefficients d1 and d2 are now

d1 =
ln(F/K) + 1

2 σ̂
2(T − t)

σ̂
√
T − t

d2 =
ln(F/K)− 1

2 σ̂
2(T − t)

σ̂
√
T − t ,

and the forward price C̄ of the option has to satisfy the forward version of the
Black–Scholes PDE:

0 = C̄t + 1
2 σ̂

2F 2C̄SS . (2.6)

The Black formula remains valid for stochastic interest rates, and, as long as share
price and interest rate process are independent, forward prices are martingales for
all maturities under the original martingale measure. This can be used to make the
analysis independent of possibly stochastic interest rates, and the forward prices of
the options and the share can be approximated with the respective futures prices at
very small errors.

(iii) Stochastic implied volatilities

In actual markets the implied volatility for a traded option is by no means constant.
We therefore specify the following dynamics for the implied volatility of an option
with maturity T and strike K:

dσ̂(T,K) = u(T,K) dt+ γ(T,K) dW0 +
N∑
n=1

vn(T,K) dWn. (2.7)

The implied volatility is driven by the Brownian motions W1, . . . ,WN and a term
γ dW0 which is driven by the same Brownian motion that is driving the share price.
This can be used to model the correlation between implied volatility and share-price
movements. Negative correlation of this type is frequently observed, especially at
large down movements of the share price where there is an increase in the implied
volatility.

To simplify notation we will write the N -dimensional Brownian motion W =
(W1, . . . ,WN )T and the volatility vector v = (v1, . . . , vN ) in vector notation such
that equation (2.7) becomes

dσ̂(T,K) = u(T,K) dt+ γ(T,K) dW0 + v(T,K) dW. (2.8)

The implied volatility σ̂ and the diffusion parameters γ, u and v are predictable
stochastic processes which can depend on the full state vector (S, t, σ̂), consisting of
share price S, time t and all implied volatilities σ̂. To keep the notation clear, only
the dependence on the maturity T and the strike K are shown explicitly.

To ensure existence and uniqueness of the process of implied stochastic volatilities
the diffusion parameters must satisfy certain regularity conditions which are given in
the following well-known theorem (see, for example, Karatzas & Shreve 1991, p. 284).
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Theorem 2.1 (Existence and uniqueness). Let M be the number of traded
options and let X = (S, σ̂1, σ̂2, . . . , σ̂M ) ∈ RM+1 be the state vector. Let T > 0,
and u(· , ·) : [0, T ] × RM+1 → RM+1 and v(· , ·) : [0, T ] × RM+1 → RM+1×N+1 be
measurable functions satisfying

|u(t, x)|+ |v(t, x)| 6 C(1 + |x|) (2.9)

for all x ∈ RM+1, t ∈ [0, T ] and some constant C, and

|u(t, x)− u(t, y)|+ |v(t, x)− v(t, y)| 6 D|x− y| (2.10)

for all x, y ∈ RM+1, t ∈ [0, T ] and some constant D.
Then the stochastic differential equation X(0) = X0 and

dX = u(t,X) dt+
N∑
i=0

v(t,X) dWi (2.11)

has a unique t-continuous solutionX(t;ω) = (S(t;ω), σ̂1(t;ω), σ̂2(t;ω), . . . , σ̂M (t;ω)),
each component of which is measurable, adapted and square-integrable.

This solution is called a strong solution.

Because we absorbed the share-price process into the state vector X, the Lipschitz
growth condition will also have to be satisfied for the diffusion coefficients of S.
Specifically, the regularity conditions of this theorem are satisfied if the diffusion
coefficients of the implied volatilities given in equation (2.7) are Lipschitz continuous,
and if the spot volatility process σ is regular and some Lipschitz continuous function
of the other state variables.

In this model the crucial problem will be to ensure regularity for the volatility σ of
the share price and regularity of the drift coefficients un of the implied volatilities σ̂.
The other coefficients will not pose any problems: the drift of the share price is given
by rS under the martingale measure, and the volatility of the implied volatilities can
be specified by the user.

3. Modelling one implied volatility

(a) No-arbitrage conditions

So far there are no provisions in the model to ensure that there are no arbitrage
opportunities. The situation is similar to that in the Heath et al . (1992) model for
interest rates: in both cases we have an over-specified model with more securities than
sources of randomness: in Heath et al . (1992) there is a continuum of bond prices
(which are specified in terms of forward rates) and only a finite number of Brownian
motions driving the model; here we have a possibly large number of option prices (in
terms of implied volatilities) with again only a finite number of Brownian motions.

The solution to this problem is in both cases to impose restrictions on the dynamics
of the factors, which ensure that the discounted security prices are martingales under
the pricing measure. We will do this now for the case of only one traded option (and
thus also only one implied volatility).
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(b) Dynamics

To describe the dynamics of the option prices we will need the partial derivatives
of the option prices. These are, for the Black–Scholes formula,

CS = N(d1), CSS =
n(d1)

Sσ̂
√
T − t ,

Cσ̂ = S
√
T − tn(d1), Cσ̂σ̂ = S

√
T − tn(d1)

d1d2

σ̂
,

Ct = −Sn(d1)σ̂
2
√
T − t − rKe−r(T−t)N(d2), CSσ̂ = − 1

σ̂
d2n(d1).

And also CK = −CS , CKK = CSS , CT = −Ct. In forward prices the partial deriva-
tives are

C̄F = N(d1), C̄FF =
n(d1)

Fσ̂
√
T − t ,

C̄σ̂ = F
√
T − tn(d1), C̄σ̂σ̂ =

1
σ̂
F
√
T − tn(d1)d1d2,

C̄t = −Fn(d1)σ̂
2
√
T − t , C̄Fσ̂ =

1
σ̂
d2n(d1),

again with C̄K = −C̄F , C̄KK = C̄FF , C̄T = −C̄t. Here N(x) is the cumulative
standard normal distribution function and

n(x) =
1√
2π

e−x
2/2

is its density.
Using the dynamics of the implied volatilities and of the share price we can now

derive the dynamics of the option prices that are implied by these dynamics using
Itô’s lemma:

dC = Ct dt+ CS dS + 1
2σ

2S2CSS dt+ Cσ̂ dσ̂ + 1
2Cσ̂σ̂ d〈σ̂〉+ CSσ̂ d〈σ̂, S〉. (3.1)

(c) Drift restrictions

For absence of arbitrage we need the discounted option-price process to have zero
drift under the martingale measure, or equivalently, it has drift rC dt if it is not
discounted. The drift component of C is, according to (3.1), given by

rC dt = E[dC] = Ct dt+ rSCS dt+ 1
2σ

2S2CSS dt

+ Cσ̂u dt+ 1
2Cσ̂σ̂v

2 dt+ CSσ̂γσS dt. (3.2)

To simplify notation all dependencies on (S, t, σ̂;K,T ) in σ̂, u, v and γ have been
dropped. Furthermore, we write

v2 :=
N∑
n=1

v2
n (3.3)

for the volatility of the implied volatility, and

f := ln(F/K), s := ln(S/K), τ := T − t. (3.4)
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Equation (3.2) can be reduced using the Black–Scholes partial differential equa-
tion (2.3):

0 = (Ct + rSCS + 1
2 σ̂

2S2CSS − rCS) dt

+ (1
2(σ2 − σ̂2)S2CSS + Cσ̂u+ 1

2Cσ̂σ̂v
2 + γσSCSσ̂) dt, (3.5)

whence we can derive the no-arbitrage drift of the implied volatility of the option:

u =
1

2Cσ̂
((σ̂2 − σ2)S2CSS − Cσ̂σ̂v2 − 2γσSCSσ̂). (3.6)

For European call options the no-arbitrage drift restriction is expanded to

σ̂u =
1
2τ

(σ̂2 − σ2)− 1
2d1d2v

2 +
d2√
τ
σγ. (3.7)

It is necessary for absence of arbitrage that this restriction is satisfied for all options
at all times (Q− almost surely). Note that the restriction (3.7) has to hold for each
implied volatility and its diffusion parameters individually. If we have several traded
options we will also have a set of restrictions, one for each drift parameter. Not
surprisingly, we also get the same restriction when the derivation is taken via the
forward options prices C̄. Here we have to impose that C̄ has no drift under the
martingale measure, which will yield equation (3.7).

(d) Volatility bubbles at t = T

Examination of equation (3.7) shows several interesting features of the stochastic
implied volatility.

(i) If the implied volatility is constant (i.e. γ = u = v = 0), the drift restriction
is only satisfied if σ̂ = σ. In this case the option price must be given by the
standard Black–Scholes equation with the correct implied volatility.

(ii) The implied volatility σ̂ has a mean fleeing behaviour which is shown in the
term with (σ̂2−σ2) (‘mean fleeing’ as opposed to ‘mean reversion’). The further
it is away from the spot volatility σ the more it is pushed away from it.†

(iii) The speed of the mean-fleeing behaviour seems to go to infinity as t→ T . This
means that the solution to the stochastic volatility equation will blow up as
t→ T unless there is another force counteracting it.

(i) The case of constant σ

The reason for the mean-fleeing behaviour becomes clearest in the situation of
constant σ (i.e. the classical Black–Scholes world) but with σ̂ different from σ, and
possibly stochastic. This is clearly a situation with arbitrage opportunities, because
by Black–Scholes the option prices should exhibit a constant implied volatility of σ.
This arbitrage manifests itself in the form of a volatility bubble.

If the implied volatility is too large (σ̂ > σ), the option is too expensive compared
to its Black–Scholes price, and the dS-component will have a negative contribution

† As d1 and d2 also contain terms in σ̂ this statement will have to be modified slightly.
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to the expected growth rate. This must be compensated, and the only possible com-
pensation would be through a locally expected increase in the implied volatility. This
would push it even further away from the correct level of σ̂ = σ.

The whole mechanism is very similar to a price bubble in general equilibrium
theory. There prices are moved further and further away from their fundamental
value because the agents expect them to do exactly this. As long as agents expect
this to go on, the wrong valuation can be sustained.

Here we have a bubble in the option price which is driven by the dynamics of
the implied volatility. The initial option price is wrong but it does not revert to its
correct value because the implied volatility grows. This pushes the option price even
further away from its correct value, which in turn requires an even larger drift in the
implied volatility to sustain it.

Because we have a finite time-horizon the bubble has to burst at the maturity of
the option. This is where the drift of the implied volatility explodes, but even an
infinite implied volatility cannot support the incorrect option price. The discounted
option price loses its martingale property at this point and the solution to the SDE
for the implied volatility ceases to exist. (The Lipschitz growth condition (2.9) in
theorem 2.1 is not satisfied.) Thus the only specification of σ̂ that prevents volatility
bubbles is to set σ̂ = σ = const.

(ii) The case of time-dependent σ(t)

As a further example let us consider the case of a time-dependent (but non-
stochastic) spot volatility function σ(t). Here it is well known that the correct spec-
ification of the implied volatility for any option with maturity T is given by the
average future volatility

σ̂2 =
1

T − t
∫ T

t

σ2(s) ds. (3.8)

The dynamics of the implied volatility can be inferred from equation (3.8) by taking
the time-derivative of

√
σ̂2:

dσ̂
dt

=
1

2σ̂
1

T − t(σ̂
2 − σ2), (3.9)

which is in exact accordance with the drift restriction (3.7). Conversely, the average
future volatility (3.8) is the only solution of (3.7) that remains finite at T . A speci-
fication of implied and spot volatilities should therefore obey some relationship that
ensures that the implied volatility is (close to) the expected average spot volatility
over the remaining lifetime of the option.

(e) No-bubbles restrictions

Bubbles in the implied volatilities are an undesirable feature of any pricing model
and comparable to the presence of arbitrage opportunities. Therefore, restrictions
have to be imposed to prevent bubbles from occurring. This can be achieved by
using the last degree of freedom that is left in the model: the stochastic process of
the spot volatility σ.
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The explosion at time T of the drift of the implied volatility is caused by the terms
in 1/(T − t) in equation (3.7). Noting that d1 and d2 also contain terms of 1/

√
T − t

we must therefore require that

lim
t→T

{
1

2σ̂
1

T − t(σ̂
2 − σ2)− 1

2σ̂
d1d2v

2 +
d2

σ̂
√
T − tσγ

}
<∞, ∀σ̂, (3.10)

and that σ̂ remains bounded a.s., too. Then the SDE for the implied volatilities σ̂
still has a unique and bounded solution and all price processes are well specified and
arbitrage-free.

As equation (3.10) contains only terms in 1/(T − t) it is sufficient to have linear
convergence to zero of the term in the curly brackets, i.e.

{(σ̂2 − σ2)− d1d2(T − t)v2 + 2d2
√
T − tσγ} = O(T − t) as t→ T. (3.11)

Noting that

lim
t→T

d1
√
T − t = lim

t→T
d2
√
T − t =

1
σ̂

ln
(
S

K

)
,

this simplifies in the limit of t→ T to

σ̂2σ2 − 2γfσ̂σ − σ̂4 + f2v2 = 0. (3.12)

Equation (3.12) can be viewed as a quadratic equation for the spot volatility σ or
as a fourth-order polynomial equation for the implied volatility σ̂. The equation for
the spot volatility has the roots

σ =
γf

σ̂
±
√
σ̂2 − f2

σ̂2 (v2 − γ2). (3.13)

Here the positive root has to be taken to ensure a positive relationship between σ̂
and σ.

Although there are closed-form solutions for the full fourth-order polynomial equa-
tion (3.12) for σ̂, here we only consider the case of γ = 0. Then (3.12) has the root

σ̂2 = 1
2σ

2 +
√

1
4σ

4 + f2v2. (3.14)

(The other root would yield a negative value for σ̂2.)
Equations (3.13) and (3.14) have several consequences.

(i) For non-stochastic σ̂, i.e. v = γ = 0, the spot volatility equals the implied
volatility σ = σ̂ in the limit as maturity approaches. For times before maturity,
the process of the spot volatility follows from the rate of change of the implied
volatility via equation (3.7).

(ii) Stochastic implied volatilities require stochastic spot volatilities. Otherwise the
spot volatility σ could not converge to its limit as is required in equation (3.13).

(iii) For a given maturity T and different strike prices K and K ′, the limits of
the implied volatilities σ̂(K) and σ̂(K ′) as t → T are linked by (3.14). This
yields an implied volatility structure that exhibits the smile effect as shown in
figure 1.
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Figure 1. Implied volatilities as t→ T . Parameter values: S = 100, σ = 0.2, v = 0.1, γ = 0.

(iv) The extent of the smile effect is directly related to the volatility of volatility,
v2. Thus v2 need not necessarily be estimated from historical data, it can also
be fitted to an observed market smile.

(v) Similar to the smile effect, a ‘sneer’ (i.e. asymmetry in the implied volatilities)
can be incorporated using γ.

(f ) Specification of the spot volatility process

There is considerable freedom in the choice of the specification of the spot volatility
process provided equation (3.13) is satisfied as maturity is approached, t→ T . Apart
from this there is a unique specification of the spot volatility process for any given
drift of the implied volatility under the martingale measure. Here it should be noted
that the specification of the drift of the implied volatility under the martingale
measure need not necessarily agree with empirical observations, as this drift will
typically contain a risk premium.

Assuming one would like to specify the drift of the implied volatility as a function
u∗(σ̂, . . . ) of the implied volatility (and possibly other parameters) the process of the
spot volatility has to be chosen such that equation (3.7) is satisfied, i.e.

σ̂u∗ =
1
2τ

(σ̂2 − σ2)− 1
2d1d2v

2 +
d2√
τ
σγ.

This is a quadratic polynomial in σ and its solution is

σ = γd2
√
τ + {σ̂2 − 2τ σ̂u∗ + τd2(γ2d2 − v2d1)}1/2,

σ =
γ

σ̂
(f − 1

2 σ̂
2τ)

+
{
σ̂2 − 2τ σ̂u∗ +

1
σ̂2 (f − 1

2 σ̂
2τ)[(γ2 − v2)f − (γ2 + v2)1

2 σ̂
2τ)]

}1/2

.

 (3.15)
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So, given a specific u∗, the spot volatility process that is consistent with u∗ is given
by equation (3.15). The approach taken here is exactly the opposite of the classical
stochastic volatility models. There, after specifying the dynamics of the spot volatility
process, the option prices and implied volatilities are derived. Here we specify the
process of the implied volatility and derive a consistent spot volatility process. As
the spot volatility cannot be observed directly this seems to be a more pragmatic
approach.

One natural specification would be to choose u∗ = 0, i.e. the implied volatility is
a martingale. This, and zero correlation γ = 0, would yield

σ2 = σ̂2 − v2

σ̂2 (f2 − 1
4τ

2σ̂4). (3.16)

Here again we can see that σ and σ̂ can be constant only if both are equal. Which
of the specifications for the drift of the implied volatility to choose remains part of
the modelling problem.

(g) Implementation of the one-factor model and the pricing of
other derivative securities

By a suitable choice of the spot volatility process σ(τ, σ̂, S) as a function of the
state variables time (as time to expiry τ), implied volatility σ̂ and share price (as
log-moneyness f), any drift can be supported for the implied volatility process, and
the model even keeps its Markovian structure. This makes the implementation of
the model in a tree- or finite-difference-based algorithm possible, without needing to
recourse to Monte Carlo methods.

There are two state variables: share price S and implied volatility σ̂. The dynamics
of these two state variables under the martingale measure is

dS = rS dt+ σ(τ, σ̂, S) dW0, (3.17)
dσ̂ = u∗ dt+ γ dW0 + v dW1. (3.18)

(Without loss of generality we can collapse the N Brownian motions W1, . . . ,WN to
one.) Similar to the argument used in the derivation of the drift restriction on the
implied volatility, we can derive the restriction on the drift of the price P (S, σ̂, t)
of any derivative security that is not strongly path dependent. This price can be
expanded using Itô’s lemma and it turns out that it must satisfy the following partial
differential equation:

0 = Pt − rP + rSPS + 1
2σ

2(τ, σ̂, S)S2PSS + γσSPσ̂S + u∗Pσ̂ + 1
2v

2Pσ̂σ̂, (3.19)

with appropriate final and boundary conditions. The price of the security could be
written as a function of the state variables because of the Markovian nature of the
model set-up.

The correct specification of the boundary conditions and the solution of partial
differential equations like (3.19) with finite-difference methods is now standard in
options pricing theory.†

The pricing becomes particularly simple if the pay-off does not depend on the
share price, like in the case of the implied volatility futures contract VOLAX at the

† See Wilmott et al. (1993) for an applied introduction.
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DTB. Here the pay-off at time T1 is proportional to the weighted average of the
implied volatilities of a basket of options at the money with maturity T2 > T1. If
one simplified the basket of options at the money to one prespecified option, then
the pay-off is simply the value of σ̂(T1) at time T1.

The price of this security is the expected discounted value of the pay-off, thus

P (t) = e−r(T1−t)E[σ̂(T1)] = e−r(T1−t)
(
σ̂0 +E

[∫ T1

t

u∗ ds
])
. (3.20)

The price of the volatility future depends directly on the specification of the drift of
the implied volatility under the martingale measure. Thus it is undetermined as long
as the process of σ̂ is not determined. This can be done either by specifying a process
for the spot volatility σ and then deriving the process that the implied volatility
σ̂ has to follow, or by directly specifying the process of the implied volatility σ̂.
Furthermore, equation (3.20) can be used to fit u∗ to the price of a volatility futures
contract.

4. Stochastic forward volatilities

If implied volatilities are given for several options with increasing maturities, T1,
T2, . . . , Tn, then the structure of the implied volatilities can be analysed more clearly
if forward implied volatilities are used.

(a) Change to local variances

It is more convenient for the following sections to change the set-up from modelling
the implied volatility σ̂ to the modelling of its square, the implied variance σ̂2. With
the definition

dσ̂ := u dt+ v dW + γ dW0, (4.1)

Itô’s lemma yields

dσ̂2 = (2σ̂u+ v2 + γ2) dt+ 2σ̂v dW + 2σ̂γ dW0, (4.2)

which can be expanded to

dσ̂2 = U dt+ 2σ̂v dW + 2σ̂γ dW0, (4.3)

U =
1

T − t(σ̂
2 − σ2) + (1− d1d2)v2 +

2d2√
T − tγσ + γ2. (4.4)

Equation (4.4) is the no-arbitrage restriction on the drift U of σ̂2.

(b) Forward volatilities

Using the implied variance the concept of a forward implied volatility is easily
explained: if the share price S follows a geometric Brownian motion, the variance of
the log of the share price at time T is

E[(lnS(T )− lnS(t))2] = (T − t)σ2. (4.5)
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If there are two implied volatilities σ̂2
1 and σ̂2

2 for the maturities T1 < T2, the forward
volatility σ̂12 over the time-interval (T1, T2] is defined as

(T2 − t)σ̂2
2 = (T1 − t)σ̂2

1 + (T2 − T1)σ̂2
12. (4.6)

This can be rearranged to yield

σ̂2
12 =

1
T2 − T1

((T2 − t)σ̂2
2 − (T1 − t)σ̂2

1). (4.7)

Just like the implied volatility σ̂1 gives an indication of the market’s expectation
of the average volatility of the share-price process until T1, the forward volatility
σ̂12 gives an indication of the expected volatility in the time interval [T1, T2]. If the
volatility of S jumps from σ̂1 to σ̂12 at T1, then the log share price

lnS(T2)/S(t)

has the variance (T2− t)σ2
2 , which is consistent with the second implied volatility σ̂2.

While this interpretation with time-dependent volatility gives a good intuition of
the workings of the model, it is not exactly true for stochastic volatility.

Furthermore, the forward implied volatility is different from the forward volatil-
ity and the forward contract on realized volatility introduced in Dupire (1993a, b).
Dupire’s forward contract on volatility captures the market expectation of the real-
ized volatility of S over the relevant interval, while the definition above uses implied
volatilities from options prices. In a stochastic volatility environment implied volatil-
ities and expected realized average volatilities do not coincide, and forward implied
volatilities and forward contracts on realized volatility also differ.

The difference is easily seen for the implied volatilities: the option price is E[C(σ)],
the expectation of the price of the option as a function of some stochastic spot
volatility σ. By definition of the implied volatility this must be equal to C(σ̂). Because
C is a nonlinear function, E[C(σ)] is not equal to C(E[σ]). Therefore, the expected
average volatility E[σ̄] is not equal to the implied volatility σ̂. The same argument
also applies to forward volatilities.

(c) Forward volatility model set-up

We assume that we are given a set of option maturities T1, T2, . . . , TM , the implied
volatility σ̂1 of the first option (i.e. the option with maturity T1) and the forward
volatilities σ̂i,i+1 for the later intervals [Ti, Ti+1], i ∈ {1, . . . ,M − 1}.

The dynamics of these variables and of the share price S is

dS = rS dt+ σS dW0,

dσ̂2
1 = U1 dt+ γ1 dW0 + v1 dW,

dσ̂2
i,i+1 = Ui,i+1 dt+ γi,i+1 dW0 + vi,i+1 dW,

 (4.8)

for all i ∈ {1, . . . ,M − 1}, where again dW is the increment of an N -dimensional
Brownian motion and the volatility parameters v are in vector form. Given this spec-
ification the values and dynamics of the (direct) implied volatilities can be derived
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using the following relationships:

σ̂2
n =

1
Tn − t

[
(T1 − t)σ̂2

1 +
n−1∑
i=1

(Ti+1 − Ti)σ̂2
i,i+1

]
, (4.9)

γn =
1

2σ̂n(Tn − t)
[
2(T1 − t)σ̂1γ1 +

n−1∑
i=1

(Ti+1 − Ti)γi,i+1

]
, (4.10)

vn =
1

2σ̂n(Tn − t)
[
2(T1 − t)σ̂1v1 +

n−1∑
i=1

(Ti+1 − Ti)vi,i+1

]
. (4.11)

These parameters will be needed in the drift restrictions on the forward volatilities
in the next section.

(d) No-arbitrage dynamics of the forward volatilities

From definition (4.7) it is now easy to derive the arbitrage-free dynamics of the
forward volatilities. The dynamics must satisfy

d(σ̂2
12) =

1
T2 − T1

[d((T2 − t)σ̂2
2)− d((T1 − t)σ̂2

1)], (4.12)

where the σ̂2 follow the arbitrage-free dynamics of equation (4.4). This is expanded to

dσ̂2
12 := U12 dt+ v12 dW + γ12 dW0

=
1

T2 − T1
[(T2 − t)U2 − (T1 − t)U1 − (σ̂2

2 − σ̂2
1)] dt

+
1

T2 − T1
[(T2 − t)v2 − (T1 − t)v1] dW

+
1

T2 − T1
[(T2 − t)γ2 − (T1 − t)γ1] dW0. (4.13)

Substitution from the arbitrage-free dynamics of the plain implied volatilities (4.4)
yields the drift U12 of the forward volatility σ̂2

12:

U12 =
1

T2 − T1
[(T2 − t)U2 − (T1 − t)U1 − (σ̂2

2 − σ̂2
1)]

=
1

T2 − T1
[τ2v2

2(1− d21d22)− τ1v2
1(1− d11d12)

+ 2σ(d22
√
τ2γ2 − d12

√
τ1γ1) + τ2γ

2
2 − τ1γ2

1 ]. (4.14)

For the absence of direct correlation between volatility and share price γ1 = 0 = γ2,
it takes a particularly simple form:

U12 =
1

T2 − T1
[(T2 − t)v2

2(1− d21d22)− (T1 − t)v2
1(1− d11d12)]. (4.15)

This restriction must be applied to the drift coefficients of the forward volatilities,
and in addition to this the restriction in equation (3.7) must be satisfied by the first
volatility σ̂1. The remarks and the modelling strategy of the previous section still
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apply to the first implied volatility σ̂1; we have just extended the model using the
forward volatilities for later maturities.

Note that there are no regularity problems in equations (4.14) and (4.15). The
implied volatilities for time-intervals in the future are not directly connected to
today’s spot volatility and therefore there is no need to achieve direct consistency
between both.

(i) Implementation strategy

For the implementation of a stochastic implied volatility model with forward
volatilities, a Monte Carlo (MC) simulation is the appropriate method. First, the
problem will be in at least three dimensions (share price and two implied volatilities)
and MC methods are superior for higher-dimensional models, and second there will
be path dependence in the model (e.g. through the summation terms in (4.9)) which
makes tree- and PDE-based methods unfeasible.

The implementation will have to be done in several steps. First, the dynamics
for the spot volatility σ has to be derived using the implied volatility σ̂1 with the
shortest time to maturity T1 and its no-arbitrage drift u∗. This is done exactly as
in the previous section. This will yield the dynamics of the short end of the term
structure of volatilities dσ̂1, of the spot volatility dσ and of the share price dS.

Given this specification and the volatilities γi,i+1, vi,i+1 of the forward implied
volatilities σ̂i,i+1, the drifts Ui,i+1 of the forward implied volatilities can be derived
using equations (4.14) and (4.15) in conjunction with equation (4.8).

Now all dynamics are specified and the MC simulation can be run until maturity
T1 of the shortest option. At T1 the first option disappears and the role of the shortest
option σ̂1 in the specification of the spot volatility is taken over by the next maturity
T2 and the respective implied volatility σ̂2 (which coincides with σ̂12 at this point).

(e) A continuum of forward volatilities

In practical applications there will only be a discrete set of available options (and
thus of forward volatilities). Nevertheless it has some advantages for analysing the
case when there is a full term structure of options. The regularity problems will
be resolved very elegantly and the relationship between spot and implied forward
volatilities will be uniquely determined, thus removing some potential for misspec-
ification of the drift of the first implied volatility u∗1 in the case of discrete options
maturities.

Given a continuous set of implied volatilities σ̂2(t, T ) for all maturities T > t, we
can define the forward volatilities σ̂2

f (t, T ) with

σ̂2(t, T ) =
1

T − t
∫ T

t

σ̂2
f (t, s) ds (4.16)

and equivalently

σ̂2
f (t, T ) =

∂

∂T
[(T − t)σ̂2(t, T )], (4.17)

which is the continuous analogue to equations (4.9) and (4.7). The spot volatility at
time t (for which we had to make assumptions earlier on) is now given directly by
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the limit of the implied volatilities as T ↘ t through equation (3.13). We define the
short implied volatility

σ̂(t) := lim
T↘t

σ̂f (t, T ) (4.18)

and define f(t), γ(t) and v(t) analogously. Substituting into (3.13) yields the spot
volatility

σ(t) :=
γf(t)
σ̂(t)

+

√
σ̂(t)2 − f(t)2

σ̂(t)2 (v2(t)− γ2(t)). (4.19)

The spot volatility must assume this value to ensure absence of arbitrage in the limit
of the very short maturity option. For options at the money (f = 0) this reduces to
σ(t) = σ̂(t).

The dynamics of the σ̂2
f (t, T ) are defined in analogy to equation (4.13) as

dσ̂2
f (t, T ) = Uf (t, T ) dt+ vf (t, T ) dW + γf (t, T ) dW0, (4.20)

and again (given sufficient regularity to interchange the order of integration) we can
recover the dynamics of the implied volatilities σ̂2(t, T ) in analogy to equations (4.11)
and (4.16):

γ(t, T ) =
1

2(T − t)σ̂(t, T )

∫ T

t

γf (t, s) ds, (4.21)

v(t, T ) =
1

2(T − t)σ̂(t, T )

∫ T

t

vf (t, s) ds. (4.22)

(f ) No-arbitrage dynamics of the forward volatilities

The restriction on the drift Uf (t, T ) of the continuous forward volatility σ̂(t, T )
follows from the discrete case. In the restriction (4.14) on the drift U12 of the discrete
forward volatility σ̂12 we let maturity T2 approach T1, i.e. the limit as T2 ↘ T1 =: T .
This yields

U12 =
1

T2 − T1
[(T2 − t)U2 − (T1 − t)U1 − (σ̂2

2 − σ̂2
1)]

Uf (t, T ) = lim
T2↘T1

U12

=
d

dT
[(T − t)U(t, T )− σ̂2(t, T )]. (4.23)

The no-arbitrage drift U(t, T ) of the T -maturity implied volatility is given in equa-
tion (4.4), which makes the evaluation of (4.23) a matter of straightforward but
tedious algebra. Alternatively, one could perform the differentiation in (4.23) numer-
ically when the model is implemented. This can be done without major losses in
accuracy as most of the parameters have to be evaluated numerically anyway.

Although the expression (4.23) for the drift restriction looks rather complicated, it
is still preferable to the drift restrictions derived by Derman & Kani (1998) in a sim-
ilar context. Derman & Kani (1998) derive drift restrictions on the conditional local
volatility of the share price, and the restrictions involve a double integral of which
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one is infinite. Here we have an (admittedly complicated) expression in elementary
functions with only finite integrals of the relevant parameters from t to T as they
appear in the interest-rate model of Heath et al . (1992), which was the inspiration
for this model.

(g) Implementation

The implementation of the continuous-maturity version of the model is very similar
to the MC implementation of the discrete-maturity model of the previous section.
The only difference is that we are now relieved from the task of specifying a drift u∗
for the first implied volatility to recover the spot volatility σ. Now the spot volatility
is given directly by equation (4.19), which in turn defines the share-price process
dS = rS dt+ σS dW0.

For the forward volatilities σ̂f (t, T ) we have to specify the initial values σ̂f (0, T ),
their volatilities v(t, T ) and their correlations γ(t, T ) with the share price. The drifts
follow from equation (4.23).

Now the model dynamics can be simulated using standard MC techniques. Here
after each time-step the new drift restrictions have to be calculated.

5. Conclusion

In this paper a class of stochastic volatility models is presented that is based on
implied volatilities that are observed in the prices of liquidly traded options. It is
shown how to derive a consistent spot volatility process and which restrictions have
to be satisfied to ensure absence of arbitrage in the model.

The approach taken here is fundamentally different from classical stochastic volatil-
ity models where the spot volatility is taken as a fundamental variable, and we believe
it has several advantages.

First, for the implementation of the model the estimation of the relevant param-
eters (the volatility of the implied volatility) is much facilitated because implied
volatilities are directly observable in market prices.

Second, the model will be automatically fitted to the fundamental options prices,
and the additional information that is reflected in their implied volatilities is also
incorporated in the model. This ability to fit is only comparable to models of the
implied-tree class, but this model incorporates stochastic dynamics which most im-
plied-tree models do not.

Third, the extension of the model to a multifactor setting has been demonstrated.
In its multifactor versions (either with discrete or with continuous sets of implied
volatilities) the model is capable of reproducing much richer dynamics than one-
factor models.

The stochastic implied-tree model by Derman & Kani (1998) is the model that
is closest in scope and philosophy to this model. Nevertheless, the reader will have
realized by now that there are fundamental differences between both approaches,
most importantly the no-bubbles restrictions (which are not in Derman & Kani
(1998)) in this model and the market-based approach (as opposed to Derman &
Kani’s (1998) ‘effective volatility’ approach).

Although the analysis in this model is based on European call options, the methods
presented can also be used with the implied volatilities of other options (e.g. options
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of American type) as underlying factors. Then, the partial derivatives of the options
are needed to derive the no-arbitrage drift restrictions (see, for example, § 3 c), but
qualitatively the model would not change.

Another interesting extension of the paper would be the incorporation of inde-
pendent dynamics for options of the same maturities but different strike prices. The
problem here is that the no-bubbles restrictions still must be satisfied as maturity
approaches. Thus the final value for the implied volatilities would be predetermined
(via the value of the spot volatility and equation (3.13)). Further research will have
to show whether there is a sufficiently simple way to ensure the final condition while
still allowing richer dynamics within the smile.

Financial support by the Deutsche Forschungsgemeinschaft (DFG) through SFB 303 at the
University of Bonn is gratefully acknowledged.
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